

Supporting Information

Two Amphoteric Silver Carbene Clusters

Alexander G. Tskhovrebov, Richard Goddard, and Alois Fürstner*

anie_201803246_sm_miscellaneous_information.pdf

Author Contributions

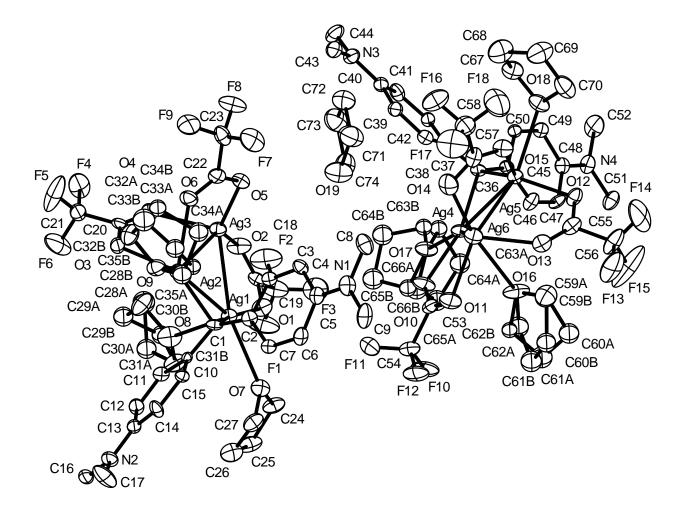

A.T. Investigation: Lead; Writing – review & Editing: SupportingR.G. Data curation: Lead; Investigation: Equal; Writing – review & Editing: Supporting.

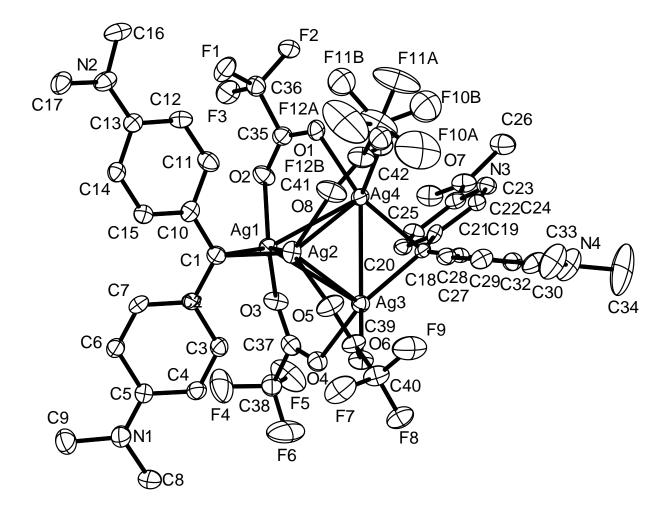
Table of Contents

Supplementary Crystallographic Information	S-1
Preparative Data	S-12
Spectra	S-17

SUPPLEMENTARY CRYSTALLOGRAPHIC INFORMATION

Single crystal structure analysis of 4

Figure S1. Molecular structure of $2(C_{35}H_{44}Ag_3F_9N_2O_9)\cdot C_4H_8O$, **4**.


X-ray Crystal Structure Analysis of 4. $2(C_{35}H_{44}Ag_3F_9N_2O_9)\cdot C_4H_8O$, $M_r = 2334.76 \text{ g} \cdot \text{mol}^{-1}$, colorless prism, crystal size 0.010 x 0.086 x 0.403 mm³, monoclinic, space group $P2_1/n$ [No. 14], a = 17.788(6) Å, b = 13.037(4) Å, c = 36.738(12) Å, $\beta = 95.329(3)^\circ$, V = 8483(5) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.828$ g \cdot cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 1.466$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.72902, T_{max} = 0.98545), Bruker AXS Enraf-Nonius Kappa Mach3 IµS Apex-II diffractometer, 2.912 < θ < 28.282°, 127714 measured reflections, 20916 independent reflections, 14640 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0869$.

Resolution	#Data #	Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 3.03	357	378	94.4	7.47	61.67	23.79	0.0447	0.0254
3.03 - 2.02	826	831	99.4	9.31	64.43	28.46	0.0427	0.0248
2.02 - 1.59	1198	1209	99.1	9.48	33.23	24.49	0.0510	0.0278
1.59 - 1.38	1219	1224	99.6	9.11	24.95	21.28	0.0606	0.0324
1.38 - 1.25	1234	1243	99.3	8.14	21.72	18.21	0.0708	0.0385
1.25 - 1.16	1186	1189	99.7	7.59	17.39	15.51	0.0861	0.0450
1.16 - 1.09	1218	1219	99.9	7.13	13.27	12.54	0.1029	0.0568
1.09 - 1.04	1092	1092	100.0	6.71	11.10	10.80	0.1192	0.0677
1.04 - 0.99	1284	1284	100.0	6.36	10.07	9.47	0.1314	0.0772
0.99 - 0.95	1273	1273	100.0	5.88	9.14	8.03	0.1517	0.0911
0.95 - 0.92	1050	1050	100.0	5.61	7.57	7.06	0.1695	0.1097
0.92 - 0.89	1268	1268	100.0	5.25	7.77	6.67	0.1726	0.1150
0.89 - 0.86	1389	1391	99.9	4.81	6.63	5.59	0.1957	0.1435
0.86 - 0.84	1066	1070	99.6	4.51	5.66	4.82	0.2179	0.1702
0.84 - 0.82	1141	1152	99.0	4.17	4.87	4.17	0.2543	0.2087
0.82 - 0.80	1283	1296	99.0	3.91	4.79	3.76	0.2606	0.2239
0.80 - 0.78	1382	1408	98.2	3.59	3.59	2.86	0.3359	0.3140
0.78 - 0.77	724	740	97.8	3.48	3.24	2.59	0.3637	0.3583
0.77 - 0.75	1616	1663	97.2	3.18	3.15	2.37	0.3892	0.3905
0.75 - 0.74	795	878	90.5	2.36	3.04	1.89	0.4172	0.4951
0.74 - 0.71	1022	2825	36.2	0.63	2.63	1.27	0.5016	0.7256
0.81 - 0.71	6215	8198	75.8	2.36	3.35	2.41	0.3547	0.3975
Inf - 0.71	23623	25683	92.0	5.24	13.04	9.67	0.0856	0.0784

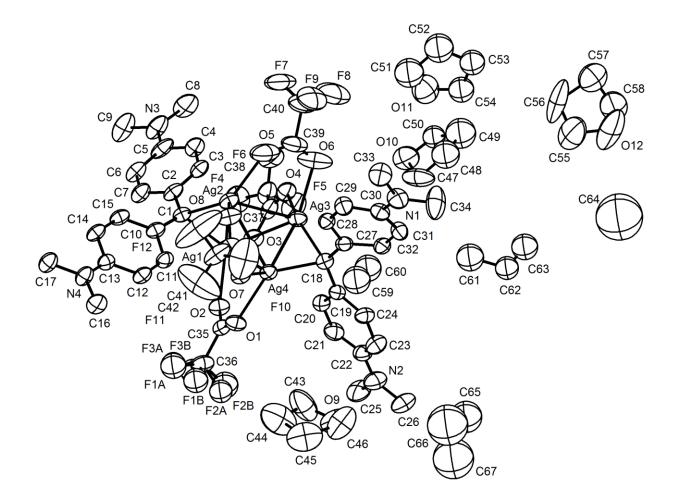
The structure was solved by dual methods and refined by full-matrix leastsquares against F^2 to $R_1 = 0.0891$ [$I > 2\sigma(I)$], $wR_2 = 0.2002$, 1086 parameters. A number of low-angle reflections were shadowed by the beamstop and removed from the data set before the final refinement cycles. Several of the tetrahydrofuran molecules are slightly disordered. One C atom (C37) was restrained to be isotropic with an effective standard deviation of 0.001. As a result of the disordered tetrahydrofuran molecules, the diffracted intensities decreased more than expected with increasing resolution leading to a high K value in the variance for the weak reflections and a much higher than expected second term in the WGHT card. The three most disagreeable reflections are given below. None has an error/est greater than 10. The error/esd is calculated as sqrt(wD²/<wD²>) where w is given by the weight formula, D = Fo²-Fc² and <> refers to the average over all reflections.

h	k	1	Fo^2	Fc ²	Error/esd	Fc/Fc(ma	x) Resolu	tion(A)
1	~	•	00017	7.1		0.14	0.102	0.14
I	6	2	22817.3	51	6177.57	9.14	0.103	2.14
0	8	2	14027.1	13	2281.34	8.85	0.062	1.62
3	11	5	11752.7	78	125.85	8.71	0.015	1.14

H atoms riding, S = 1.064, residual electron density 2.39 (0.80 Å from Ag4)/ -2.10 (0.75 Å from Ag2) e Å⁻³. **CCDC-1830117**.

Single crystal structure analysis of 5

Figure S2. Molecular structure of $C_{42}H_{40}Ag_4F_{12}N_4O_8$, 5.

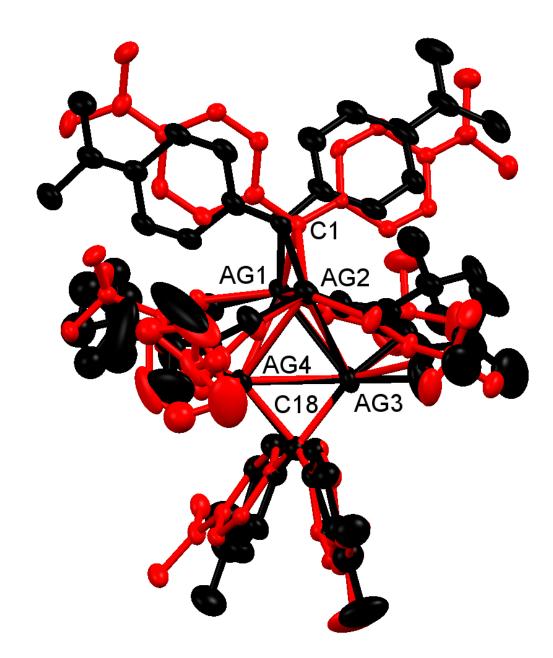

X-ray Crystal Structure Analysis of 5. $C_{42}H_{40}Ag_4F_{12}N_4O_8$, $M_r = 1388.26 \text{ g} \cdot \text{mol}^{-1}$, brown-red plate, crystal size 0.022 x 0.050 x 0.087 mm³, orthorhombic, space group *P*bca [No. 61], a = 18.503(5) Å, b = 18.326(5) Å, c = 28.286(8) Å, V = 9591(5) Å³, T = 100(2) K, Z = 8, $D_{calc} = 1.923$ g \cdot cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 1.710 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.90605$, $T_{max} = 0.97189$), Bruker AXS Enraf-Nonius Kappa Mach3 IµS Apex-II diffractometer, $1.722 < \theta < 30.508^{\circ}$, 248569 measured reflections, 14624 independent reflections, 8491 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0869$.

Resolution	#Data #	Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.57	374	379	98.7	18.18	36.84	20.50	0.0496	0.0388
2.57 - 1.68	873	875	99.8	21.10	29.13	20.88	0.0627	0.0342
1.68 - 1.32	1243	1245	99.8	21.78	13.95	17.73	0.1032	0.0388
1.32 - 1.14	1316	1320	99.7	20.99	10.15	14.24	0.1481	0.0479
1.14 - 1.03	1298	1301	99.8	19.43	6.75	10.40	0.2120	0.0682
1.03 - 0.96	1154	1154	100.0	18.12	5.28	8.13	0.2695	0.0899
0.96 - 0.90	1310	1310	100.0	17.16	4.63	6.93	0.2990	0.1085
0.90 - 0.85	1367	1367	100.0	15.97	3.53	5.18	0.3938	0.1510
0.85 - 0.81	1348	1348	100.0	14.94	2.54	3.66	0.5144	0.2219
0.81 - 0.78	1202	1202	100.0	13.91	1.91	2.64	0.5790	0.3146
0.78 - 0.75	1392	1392	100.0	13.08	1.70	2.21	0.6482	0.3817
0.75 - 0.73	1064	1064	100.0	12.19	1.37	1.67	0.7208	0.5119
0.73 - 0.71	1175	1175	100.0	11.57	1.24	1.42	0.7611	0.5997
0.71 - 0.69	1320	1320	100.0	10.76	1.12	1.20	0.8164	0.7243
0.69 - 0.67	1488	1488	100.0	9.84	0.84	0.85	0.8997	1.0392
0.67 - 0.66	804	804	100.0	9.20	0.83	0.78	0.9352	1.1300
0.66 - 0.64	1765	1765	100.0	8.61	0.57	0.48	1.0572	1.7706
0.64 - 0.63	957	957	100.0	7.93	0.52	0.45	1.0627	2.0823
0.63 - 0.62	1031	1031	100.0	7.64	0.37	0.30	1.1709	3.0716
0.62 - 0.60	2360	2516	93.8	5.77	0.29	0.19	1.2330	4.9121
0.70 - 0.60	9086	9242	98.3	8.06	0.58	0.52	1.0271	1.9054
Inf - 0.60	24841	25013	99.3	13.34	4.53	5.07	0.2275	0.1755

INTENSITY STATISTICS FOR DATASET

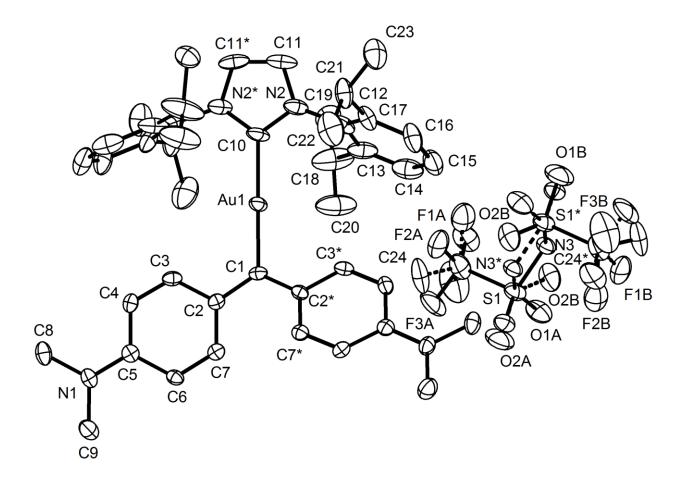
The structure was solved by dual methods and refined by full-matrix leastsquares against F^2 to $R_1 = 0.0530$ [$I > 2\sigma(I)$], $wR_2 = 0.1327$, 653 parameters. Several low-angle reflections were shadowed by the beamstop and removed before the final refinement cycles. The crystal scattered more poorly than expected for a heavy atom structure. Intensity statistics indicate some disorder in the structure. One of the trifluoromethyl groups is slightly rotationally disordered. The disordered trifluoromethyl groups were modeled by three partially occupied F atom positions with anisotropic atomic displacement parameters for the major component and three partially occupied F atom positions with isotropic diplacement parameters for the minor component. The structure was refined using data to a resolution of 0.7 Å. Decreasing the resolution of the data still further results in a decrease in Rint at the cost of the data to parameter ratio. H atoms riding, S = 1.154, residual electron density 1.38 (1.10 Å from Ag2)/ -1.19 (0.90 Å from Ag3) e Å⁻³. **CCDC-1830118**.

Single crystal structure analysis of 5-thf


Figure S3. Structure of the silver carbene cluster **5** crystallized from THF (**5**-**thf**), showing the disorder of one of the trifluoromethyl groups over two positions as well as solute THF in the asymmetric unit.

X-ray Crystal Structure Analysis of 5-thf. $C_{42}H_{40}Ag_4F_{12}N_4O_8 \cdot n(C_4H_8O)$, $M_r = 1687.27 \text{ g} \cdot \text{mol}^{-1}$, green block, crystal size 0.05 x 0.08 x 0.08 mm³, tetragonal, space group *P*-42₁c [No. 114], a = 25.709(3) Å, c = 21.2006(14) Å, V = 14012(4) Å³, T = 100(2) K, Z = 8, $D_{calc} = 1.600 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 1.190 \text{ mm}^{-1}$, Gaussian absorption correction ($T_{min} = 0.88319$, $T_{max} = 0.92445$), Bruker AXS Enraf-Nonius KappaCCD Mach3 diffractometer, $3.014 < \theta < 28.997$ °, 85255 measured reflections, 18561 independent reflections, 12918 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0648$.

INTENSITY STATISTICS FOR DATASET

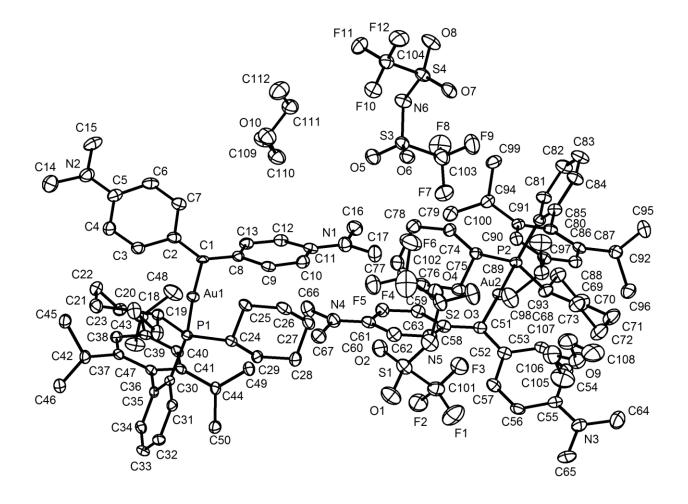

Resolution	#Data #	Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.98	288	321	89.7	8.71	94.31	52.91	0.0390	0.0162
2.98 - 2.00	677	677	100.0	8.17	93.70	47.89	0.0347	0.0175
2.00 - 1.58	997	997	100.0	6.78	36.14	35.68	0.0421	0.0233
1.58 - 1.39	916	916	100.0	6.32	27.66	30.55	0.0474	0.0270
1.39 - 1.26	968	968	100.0	5.91	24.12	26.69	0.0517	0.0305
1.26 - 1.17	935	935	100.0	5.48	16.51	19.98	0.0600	0.0403
1.17 - 1.10	971	971	100.0	5.15	12.08	15.57	0.0744	0.0526
1.10 - 1.04	1032	1033	99.9	4.86	9.75	12.70	0.0898	0.0659
1.04 - 0.99	1070	1073	99.7	4.61	7.98	10.58	0.1093	0.0823
0.99 - 0.96	753	753	100.0	4.48	7.04	9.47	0.1225	0.0958
0.96 - 0.92	1151	1153	99.8	4.23	5.66	7.60	0.1438	0.1211
0.92 - 0.89	1017	1018	99.9	4.01	5.46	7.02	0.1539	0.1326
0.89 - 0.87	748	751	99.6	3.85	4.08	5.30	0.2167	0.1821
0.87 - 0.84	1236	1240	99.7	3.60	3.74	4.66	0.2147	0.2117
0.84 - 0.82	974	977	99.7	3.47	2.76	3.44	0.2872	0.2879
0.82 - 0.80	1037	1039	99.8	3.36	2.58	3.10	0.3009	0.3173
0.80 - 0.79	568	570	99.6	3.31	2.21	2.66	0.3483	0.3739
0.79 - 0.77	1213	1221	99.3	3.14	2.07	2.37	0.3846	0.4161
0.77 - 0.75	1323	1343	98.5	2.99	1.87	2.09	0.4331	0.4784
0.75 - 0.74	713	719	99.2	2.92	1.55	1.72	0.4976	0.5884
0.74 - 0.73	546	551	99.1	2.85	1.57	1.74	0.4960	0.5877
0.83 - 0.73	5894	5939	99.2	3.14	2.06	2.40	0.3780	0.4186
Inf - 0.73	19133	19226	99.5	4.51	13.57	12.75	0.0626	0.0594

The structure was solved by dual methods and refined by full-matrix leastsquares against F^2 to $R_1 = 0.0589$ [$I > 2\sigma(I)$], $wR_2 = 0.1557$, 817 parameters. Several low-angle reflections were shadowed by the beamstop and removed from the dataset before the final refinement cycles. One of the trifluormethyl groups is disordered over two positions. The occupancies of some of the solvent tetrahydrofuran molecules were less than one and were refined. The crystal structure contains unidentified solvent which was modelled by C atoms with half occupancy. The higher than expected suggested second parameter in WGHT can be attributed to loss of solvent and a corresponding decrease in the average intensity of the reflections with increasing diffraction angle. H atoms riding, S = 1.078, residual electron density 1.07 (1.29 Å from H54A)/ -0.57 (0.76 Å from Ag2) e Å⁻³. **CCDC-1830119**.

Figure S4. Superposition of the silver clusters in the crystal structures **5** (red) and **5-thf** (black), illustrating the influence of crystal packing on the geometry of the complex.

Single crystal structure analysis of 12a

Figure S5. Molecular structure of $[C_{44}H_{54}AuN_4]^+[C_2F_6NO_4S_2]^-$, **12a**.


X-ray Crystal Structure Analysis of 12a. $[C_{44}H_{54}AuN_4]^+[C_2F_6NO_4S_2]^-$, $M_r = 1116.03 \text{ g} \cdot \text{mol}^{-1}$, green needle, crystal size 0.017 x 0.020 x 0.065 mm³, monoclinic, space group *C*2/c [No. 15], a = 21.431(6) Å, b = 15.711(4) Å, c = 17.197(8) Å, $\beta = 125.291(4)^\circ$, V = 4726(3) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.569$ g \cdot cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 3.272$ mm⁻¹, Gaussian absorption correction (T_{min} = 0.65505, T_{max} = 0.92305), Bruker AXS Enraf-Nonius Kappa Mach3 IµS Apex-II diffractometer, 2.749 < θ < 30.507°, 68764 measured reflections, 7196 independent reflections, 4961 reflections with $I > 2\sigma(I)$, $R_{int} = 0.1790$.

INTENSITY	STATISTICS	FOR	DATASET
-----------	------------	-----	---------

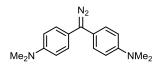
Resolution	#Data #Th	neory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 2.51	179	182	98.4	18.14	118.32	48.46	0.0342	0.0151
2.51 - 1.64	424	424	100.0	18.82	69.18	41.87	0.0500	0.0184
1.64 - 1.30	604	604	100.0	18.75	43.47	33.83	0.0811	0.0246
1.30 - 1.13	618	618	100.0	17.90	32.11	24.82	0.1175	0.0340
1.13 - 1.03	579	579	100.0	16.51	24.02	18.13	0.1628	0.0480
1.03 - 0.95	634	634	100.0	15.33	18.31	13.19	0.2179	0.0670
0.95 - 0.89	649	649	100.0	14.49	14.69	10.22	0.2695	0.0888
0.89 - 0.85	545	545	100.0	13.72	11.28	7.52	0.3396	0.1222
0.85 - 0.81	649	649	100.0	12.96	9.59	6.04	0.3910	0.1538
0.81 - 0.78	568	568	100.0	12.53	7.50	4.55	0.4728	0.2052
0.78 - 0.75	679	679	100.0	11.94	6.56	3.79	0.5250	0.2515
0.75 - 0.73	504	504	100.0	11.45	4.90	2.62	0.6263	0.3544
0.73 - 0.71	585	585	100.0	11.00	4.56	2.42	0.6678	0.4014
0.71 - 0.69	637	637	100.0	10.69	3.95	1.98	0.7262	0.4843
0.69 - 0.67	707	708	99.9	10.12	3.22	1.53	0.7962	0.6348
0.67 - 0.66	409	412	99.3	9.94	2.61	1.20	0.8680	0.8187
0.66 - 0.64	831	832	99.9	9.53	2.36	1.04	0.9032	0.9368
0.64 - 0.63	469	477	98.3	9.06	1.77	0.75	0.9806	1.3425
0.63 - 0.62	510	510	100.0	8.89	1.48	0.59	1.0267	1.6273
0.62 - 0.60	1161	1284	90.4	6.29	1.44	0.48	1.0231	2.3043
0.70 - 0.60	4417	4553	97.0	8.71	2.22	0.97	0.9043	1.1203
Inf - 0.60	11941 1	L2080	98.8	12.30	14.15	9.09	0.2012	0.1284

The structure was solved by dual methods and refined by full-matrix leastsquares against F^2 to $R_1 = 0.0481$ [$I > 2\sigma(I)$], $wR_2 = 0.1127$, 345 parameters. Several low-angle reflections were shadowed by the beamstop and removed from the data set before the final refinement cycles. The bis((trifluoromethyl)sulfonyl)amide anion is disordered about a crystallographic inversion center. H atoms riding, S = 1.019, residual electron density 1.62 (0.88 Å from C10)/ -3.77 (0.02 Å from Au1) e Å⁻³. **CCDC-1830120**.

Single crystal structure analysis of 12b

Figure S6. Molecular structure of $[C_{50}H_{69}AuN_2P]^+[C_2F_6NO_4S_2]^-C_4H_{10}O$, **12b**.

X-ray Crystal Structure Analysis of 12b. $[C_{50}H_{69}AuN_2P]^+[C_2F_6NO_4S_2]^-$ ·C₄H₁₀O, $M_r = 1280.27 \text{ g} \cdot \text{mol}^{-1}$, green needle, crystal size 0.054 x 0.062 x 0.172 mm³, triclinic, space group P-1 [No. 2], a = 10.833(3) Å, b = 18.508(5) Å, c = 29.905(7) Å, $\alpha = 102.671(4)^{\circ}$, $\beta = 95.088(4)^{\circ}$, $\gamma = 92.999(4)^{\circ}$, V = 5811(2) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.463 \text{ g} \cdot \text{cm}^3$, $\lambda = 0.71073$ Å, $\mu(Mo-K_{\alpha}) = 2.698 \text{ mm}^{-1}$, Gaussian absorption correction (T_{min} = 0.71290, T_{max} = 0.92816), Bruker AXS IµS Kappa Mach3 Apex-II diffractometer, 1.403 < θ < 26.672°, 115931 measured reflections, 24375 independent reflections, 19772 reflections with $I > 2\sigma(I)$, $R_{\text{int}} = 0.0598$.


INTENSITY	STATISTICS	FOR	DATASET
-----------	------------	-----	---------

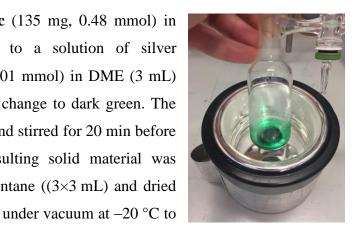
Resolution	#Data #	Theory	%Complete	Redundancy	Mean I	Mean I/s	Rmerge	Rsigma
Inf - 3.20	367	375	97.9	5.57	58.41	42.51	0.0265	0.0153
3.20 - 2.14	858	858	100.0	5.73	40.13	40.01	0.0274	0.0170
2.14 - 1.70	1254	1254	100.0	5.70	28.31	35.38	0.0313	0.0200
1.70 - 1.49	1194	1194	100.0	5.63	23.11	32.41	0.0313	0.0220
1.49 - 1.35	1262	1262	100.0	5.60	18.75	29.03	0.0389	0.0255
1.35 - 1.25	1307	1307	100.0	5.45	15.53	24.60	0.0457	0.0306
1.25 - 1.18	1164	1164	100.0	5.34	14.86	23.04	0.0498	0.0336
1.18 - 1.12	1243	1243	100.0	5.14	12.95	20.48	0.0567	0.0389
1.12 - 1.07	1263	1263	100.0	5.03	11.99	18.68	0.0606	0.0428
1.07 - 1.03	1213	1213	100.0	4.91	10.92	17.28	0.0679	0.0478
1.03 - 0.99	1392	1392	100.0	4.87	9.43	15.05	0.0778	0.0549
0.99 - 0.96	1226	1226	100.0	4.65	8.97	13.99	0.0843	0.0609
0.96 - 0.94	912	912	100.0	4.63	7.82	12.43	0.0977	0.0690
0.94 - 0.91	1474	1474	100.0	4.51	7.77	12.04	0.1029	0.0719
0.91 - 0.89	1129	1129	100.0	4.36	6.69	10.36	0.1189	0.0856
0.89 - 0.87	1219	1219	100.0	4.21	6.36	9.71	0.1269	0.0930
0.87 - 0.85	1343	1343	100.0	4.10	6.12	9.07	0.1411	0.0995
0.85 - 0.83	1439	1439	100.0	4.00	5.50	8.03	0.1551	0.1135
0.83 - 0.82	833	833	100.0	3.83	5.29	7.42	0.1711	0.1242
0.82 - 0.80	1701	1701	100.0	3.70	4.95	6.74	0.1808	0.1368
0.80 - 0.79	599	743	80.6	2.51	4.71	5.74	0.2042	0.1697
0.89 - 0.79	7134	7278	98.0	3.81	5.54	7.94	0.1554	0.1167
Inf - 0.79	24392	24544	99.4	4.73	12.89	17.80	0.0579	0.0442

The structure was solved by dual methods and refined by full-matrix leastsquares against F^2 to $R_I = 0.0382$ [$I > 2\sigma(I)$], $wR_2 = 0.0714$, 1357 parameters. A number of reflections were shadowed by the beamstop and removed from the dataset before the final refiment cycles. The crystal contains a local approximate non-crystallographic inversion center. H atoms riding, S = 1.095, residual electron density 1.76 (0.88 Å from Au2)/ -1.76 (0.74 Å from Au2) e Å⁻³. **CCDC-1830121**. **General**. All reactions were carried out under an Ar atmosphere in flame-dried glassware unless stated otherwise. Solvents were purified by distillation over the indicated drying agents and were transferred under Ar: Et_2O (Mg/anthracene), CH_2Cl_2 (CaH₂), pentane (Na/K)

NMR: Spectra were recorded on Bruker AV 400s and AV 500 spectrometers in the indicated solvents; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hz. The solvent signals were used as references (CDCl₃: $\delta_C = 77.16$ ppm; residual CHCl₃ in CDCl₃: $\delta_H = 7.26$ ppm; CD₂Cl₂: $\delta_C = 53.84$ ppm; residual CHDCl₂ in CD₂Cl₂: $\delta_H = 5.32$ ppm); ¹H and ¹³C assignments were established using NOESY, HSQC and HMBC experiments; numbering schemes as shown in the Inserts. IR: Perkin-Elmer Spectrum One spectrometer, wavenumbers (\tilde{v}) in cm⁻¹. MS: EI: Finnigan MAT 8400 (70 eV), ESI: Thermo Scientific LTQ-FT or Thermo Scientific Exactive, GC-EI: Thermo Scientific Trace GC Ultra with a Thermo Scientific ISQ spectrometer, accurate mass determinations: Finnigan MAT 95, Thermo Scientific LTQ FT, or Thermo Scientific Exactive. Flash chromatography: Merck Geduran® Si 60 (40–63 µm). Unless stated otherwise, all commercially available reagents (Aldrich, TCI-Europe, Strem, ABCR) were used as received. Activated MnO₂ was prepared according to the literature.¹

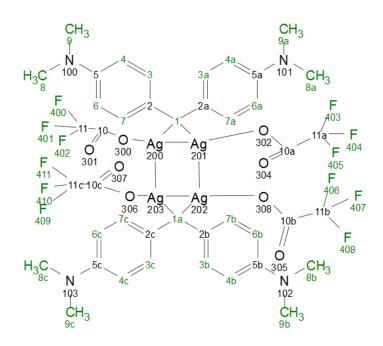
Preparation of the Diazo Compound 3c. Activated MnO₂ (615 mg, 7.074 mmol)¹ was

added to a solution of the corresponding hydrazone (200 mg, 0.708 mmol)² in THF (10 mL) at -78 °C in the dark. The resulting mixture was warmed to 0 °C and stirred for 20 min. All volatile components


were evaporated, the residue was washed with pentane (3×5 mL) and dried under vacuum in the dark to give the title compound as a green solid (171 mg, 86%). *The compound should be stored under Ar at* $-20 \degree C$ *in the dark*. ¹H NMR (400 MHz, [D₆]-DMSO): δ 7.59 (d, J = 9.0 Hz, 4H), 6.75 (d, J = 9.0 Hz, 4H), 3.02 (s, 12H); ¹³C{¹H} NMR (100 MHz, [D₆]-DMSO): δ 192.1, 152.5, 131.5, 125.3, 110.6, 39.7 (signal partially overlapping with residual solvent peak). The data are in agreement with those reported in the literature.³

¹ J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, T. Walker, *J. Chem. Soc.* **1952**, 1094-1111.

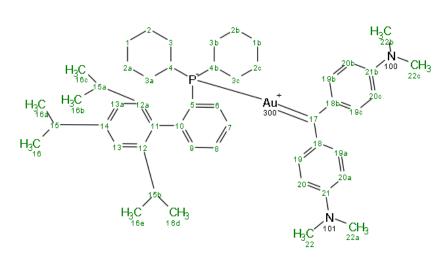
² C. L. Bagwell, D. M. L. Leonard, J.-P. Griffiths, M. G. Moloney, N. J. Stratton, D. P. Travers, *Macromol. React. Eng.* 2014, *8*, 170-180.


³ a) R. W. R. Humphreys, D. R. Arnold, *Can. J. Chem.* **1979**, *57*, 2652-2661; b) M. I. Gillibrand, A. H. Lamberton, *J. Chem. Soc.* **1949**, 1883-1887.

Complex 5. A solution of substrate **3c** (135 mg, 0.48 mmol) in DME (4 mL) was added dropwise to a solution of silver trifluoroacetate (AgOTFA) (223 mg, 1.01 mmol) in DME (3 mL) at -55 °C, causing an immediate color change to dark green. The resulting mixture was warmed to 0 °C and stirred for 20 min before pentane (15 mL) was added. The resulting solid material was washed with toluene ((3×5 mL) and pentane ((3×3 mL) and dried

give the title complex as a dichroic purple/green solid material (191 mg, 57%). Single crystals suitable

for X-ray diffraction were grown from a saturated solution of **5** in DME at -35 °C. ¹H NMR (400 MHz, -20 °C, CD₂Cl₂): δ 7.48 (d, J = 9.2 Hz, 8H, H-3, H-7), 6.79 (d, J = 9.4 Hz, 8H, H-4, H-6), 3.21 (s, 24H, NMe₂). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 221.1 (C-1), 161.7 (q, J = 35.3 Hz, C-10), 155.9 (C-5), 141.1 (C-2), 117.5 (q, J =292.3 Hz, C-11), 112.8 (C-3, C-4, C-6, C-7), 40.9 (NMe₂). ¹⁹F NMR (376 MHz, -20 °C, CD₂Cl₂): δ

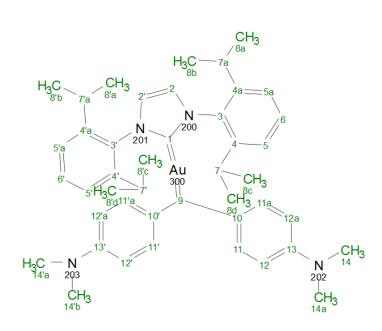

-73.6 ppm. Anal. calcd for C₄₂H₄₀Ag₄F₁₂N₄O₈: C 36.34; H 2.90; N 4.04; found: C 35.92; H 3.11; N 3.98.

Reaction between Compound 3 and AgOTFA in THF. Method A. The solution of **3** (6 mg, 21.4 μ mol) in THF (1 mL) was added dropwise to a solution of AgOTFA (15 mg, 67.9 μ mol) in THF (1 mL) at -78 °C, leading to the immediate color change to dark green. The resulting mixture was layered with pentane (5 mL) and kept at -35 °C to give a mixture of crystals of **4** and **5** suitable for the X-ray analysis.

Method B (NMR Characterization). AgOTFA (10 mg, 45.3 μ mol) was dissolved in [D₈]-THF (0.3 mL) and the resulting solution was cooled to -78 °C. A solution of **3** (4.5 mg, 16.1

μmol) in [D₈]-THF (0.2 mL) was added, leading to the immediate color change to dark green. The resulting solution was transferred into an NMR tube for the further analysis. ¹H NMR (500 MHz, -20 °C, [D₈]-THF): δ 7.64 (d, J = 9.2 Hz, 8H), 6.99 (d, J = 9.4 Hz, 8H), 3.30 (s, 24H). ¹³C NMR (126 MHz, -20 °C, [D₈]-THF): δ 223.1, 162.1 (q, J = 35.3 Hz), 156.9, 142.2, 140.8, 120.0 (q, J = 290.8 Hz), 113.4, 40.6. ¹⁹F NMR (376 MHz, -20 °C, THF- d_8): δ -73.7 ppm.

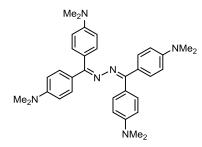
Preparation of the Gold Carbene Complex 12b (L = XPhos). A solution of complex 5 (24



mg, 17 μ mol) in CH₂Cl₂ (2 mL) was added dropwise to a solution of LAuNTf₂ (32 mg, 34 μ mol) in CH₂Cl₂ (2 mL) at -50 °C. The resulting mixture was warmed to 0 °C and stirring was continued for 10 min. The mixture was then

cooled to -20 °C and the solvent was carefully removed under high vacuum at this temperature. The residue was rinsed with Et₂O (2 mL) and dried in vacuum before it was redissolved in CD₂Cl₂ for NMR inspection (84%, determined by NMR using 1,2-dichloroethane as an internal standard). Crystals suitable for X-ray diffraction were obtained from a saturated solution of the complex in Et₂O at -20° C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 7.69$ (td, J = 7.3, 3.2 Hz, 1H, H-7), 7.56–7.52 (m, 2H, H-6, H-8), 7.38 (d, J = 9.2 Hz, 4H, H-19), 7.20–7.17 (m, 1H, H-9), 6.85 (s, 2H, H-13), 6.75 (d, J = 8.9 Hz, 4H, H-20), 3.23 (s, 12H, H-22), 2.32 (ddt, J = 18.6, 12.2, 5.5 Hz, 5H, H-4, H-15), 2.11 (d, J = 12.8 Hz, 4H, H-3'), 1.92–1.77 (m, 2H, H-1'), 1.77–1.65 (m, 4H, H-2'), 1.54 (ddd, J = 12.4, 5.5, 2.6 Hz, 4H, H-3"), 1.39 (ddd, J = 12.3, 6.0, 3.0 Hz, 1H, H-1b"), 1.35–1.23 (m, 5H, H-1", H-2"), 1.20 (d, J = 6.9 Hz, 6H, H-16d, H-16e), 0.87 (d, J = 6.6 Hz, 6H, H-16b, H-16c), 0.79 (d, J = 6.9 Hz, 6H, H-16, H-16a); $^{13}C{^{1}H}$ NMR (100 MHz, CD₂Cl₂): $\delta = 252.5$ (C-17), 155.3 (C-21), 148.5 (C-14), 146.6 (C-10), 146.1 (C-12), 140.5 (C-19), 137.3 (C-18), 136.6 (C-11), 133.3 (C-9), 133.2 (C-7), 130.7 (C-8), 128.1 (d, J = 44.0 Hz, C-5), 127.6 (d, J = 6.1 Hz, C-6), 121.6 (C-13), 111.8 (C-20), 40.7 (C-22), 36.7 (C-4b), 36.4 (C-4), 33.6 (C-15), 30.9 (C-15a, C-15b), 30.6 (C-1, C-1b), 30.1 (C-3), 27.1 (C-2a), 26.9 (C-2), 26.8 (C-2b), 26.6 (C-2c), 25.6 (C-16d, C-16e), 23.2 (C-16a, C-

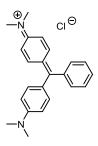
16), 22.4 (C-16b, C-16c). ³¹P NMR (377 MHz, CD₂Cl₂): δ = 41.2 ppm. MS (ESI⁺): calcd for C₅₀H₆₉AuN₂P: 925.4868 [M – NTf₂]⁺; found: 925.4858.


Gold Carbene Complex 12a. Prepared analogously from complex 5 (21 mg, 15 μ mol) and

IPrAuNTf₂ (26 mg, 30 µmol) in CH_2Cl_2 as a deep blue solid (69%, determined by NMR using 1,2dichloroethane internal as standard). Crystals suitable for Xray diffraction were grown form a concentrated solution of the complex in CH₂Cl₂ that was carefully layered with Et₂O and kept at -20° C. ¹H NMR (400 MHz, CD₂Cl₂): $\delta = 1.22$ (d, J = 7.3 Hz, 12H, H-8), 1.23 (d, J = 7.2 Hz,

12H, H-8'), 2.54 (hept, J = 6.3, 5.9 Hz, 4H, H-7), 6.49 (d, J = 9.0 Hz, 4H, H-12), 7.03 (d, J = 9.0 Hz, 4H, H-11), 7.40 (s, 2H, H-2), 7.41 (d, J = 7.8 Hz, 4H, H-5), 7.66 (t, J = 7.8 Hz, 2H, H-6); ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): $\delta = 23.8$ (C-8), 24.4 (C-8'), 28.8 (C-7, C-7'), 40.6 (C-14), 111.6 (C-12), 123.8 (C-2), 124.2 (C-5) 130.4 (C-6), 134.0 (C-3), 138.0 (C-10), 140.0 (C-11), 146.0 (C-4), 155.1 (C-13), 191.4 (C-1), 246.8 (C-9); MS (ESI⁺): calcd for C₄₄H₅₆AuN₄: 837.4169 [M – NTf₂]⁺; found: 837.4165.

Catalytic Formation of Azine 6. AgOTFA (2 mg, 0.009 mmol) was added to the solution of

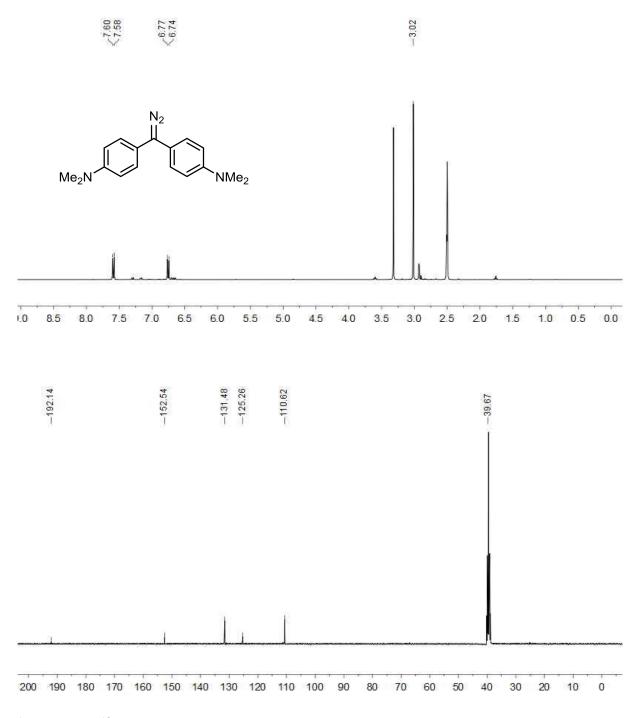

compound **3c** (50 mg, 0.18 mmol) in CH_2Cl_2 (5 mL), causing a vigorous gas evolution accompanied by the color change to red-brown. The resulting solution was stirred for 30 min before it was concentrated to a total volume of ca. 1 mL. Hexane (5 mL) was added, the precipitated yellow solid was filtered off, washed with hexane ((3×3 mL) and dried under

vacuum to give the title compound as a pale yellow solid (45 mg, 94%). The analytical and spectral data are in accord with the literature.⁴

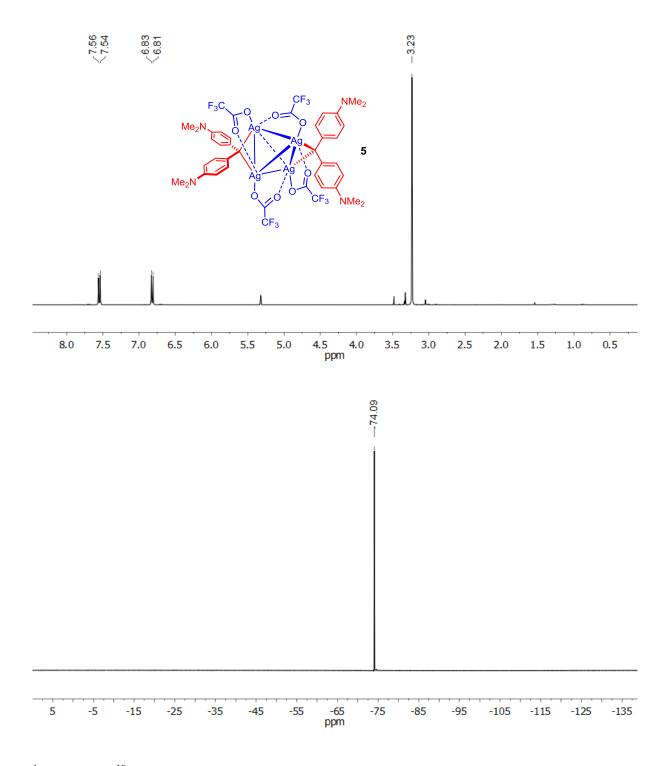
⁴ S. Hünig, M. Kemmer, H. Wenner, F. Barbosa, G. Gescheidt, I. F. Perepichka, P. Bäuerle, A. Emge, K. Peters, *Chem. Eur. J.* **2000**, *6*, 2618-2632.

Formation of Azine 6 by Stoichiometric Reaction of Complex 5 with the Diazo Derivative 3c. Compound 3c (30 mg, 107 μ mol) was added to the precooled (-78 °C) solution of complex 5 (12 mg, 8.6 μ mol) in CH₂Cl₂ (2 mL), and the resulting mixture was warmed to room temperature and stirred for 2 h. The resulting red-brown solution was evaporated to dryness, the residue was dissolved in CD₂Cl₂ and analyzed by the NMR spectroscopy which showed an assay yield of 96% (determined by ¹H NMR using dichloroethane as internal standard).

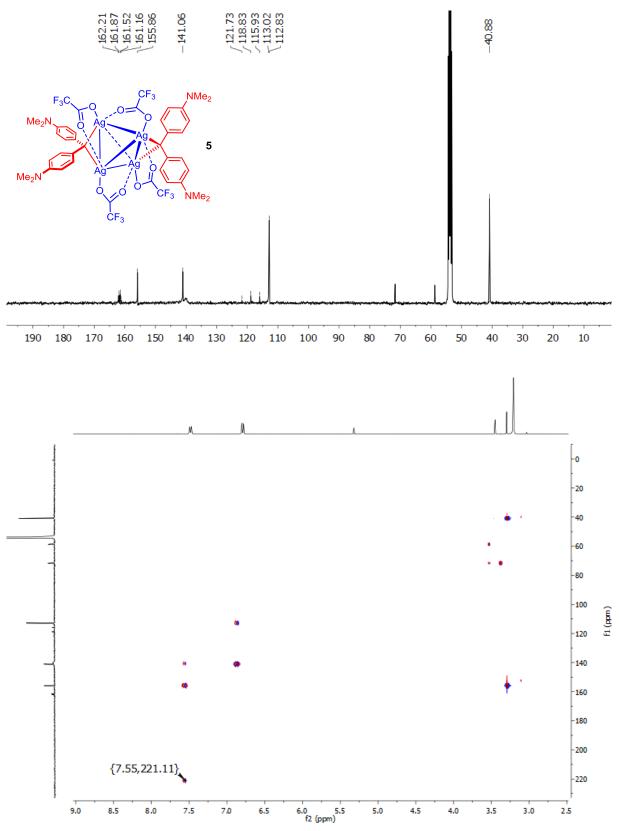
Cross Coupling Reaction with Phenylmagnesium Bromide. PhMgBr (1 M in THF, 51 µL)

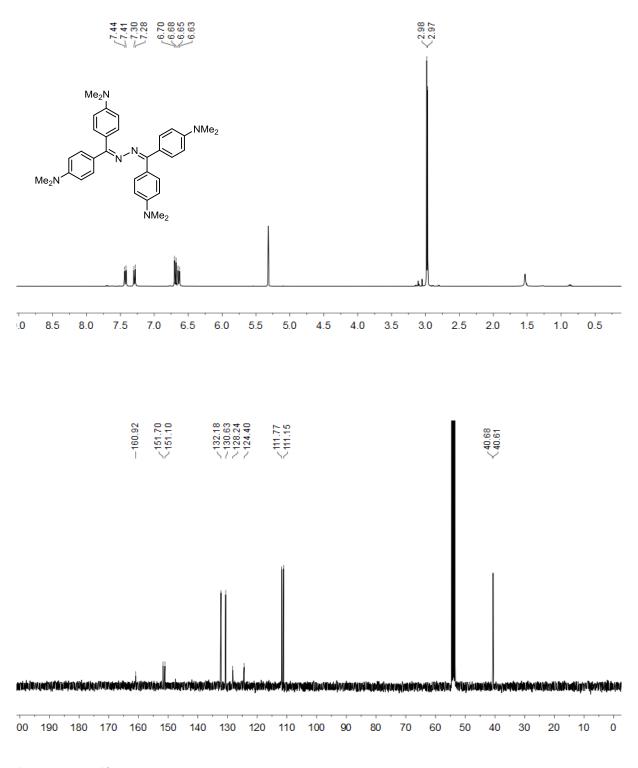

was added to a precooled (-78 °C) solution of complex **5** (35 mg, 25 µmol) in THF (5 mL), leading to an immediate color change of the mixture to redbrown. The mixture was warmed to ambient temperature and stirring was continued for 4 h while the color of the mixture changed to blue-green. The reaction was carefully quenched with MeOH (2 mL) and HCl (1 M in EtOAc,

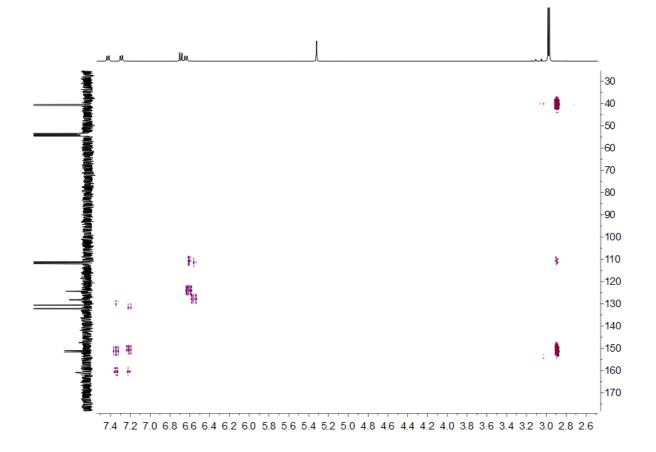
0.5 mL). Insoluble material was filtered off, the filtrate was evaporated to dryness, washed with toluene $(3 \times 3 \text{ mL})$ and pentane $(3 \times 3 \text{ mL})$, and dried under vacuum to give product **11** as a blue/green solid (14 mg, 75%). The analytical and spectroscopic data were in accord with those published in the literature.⁵

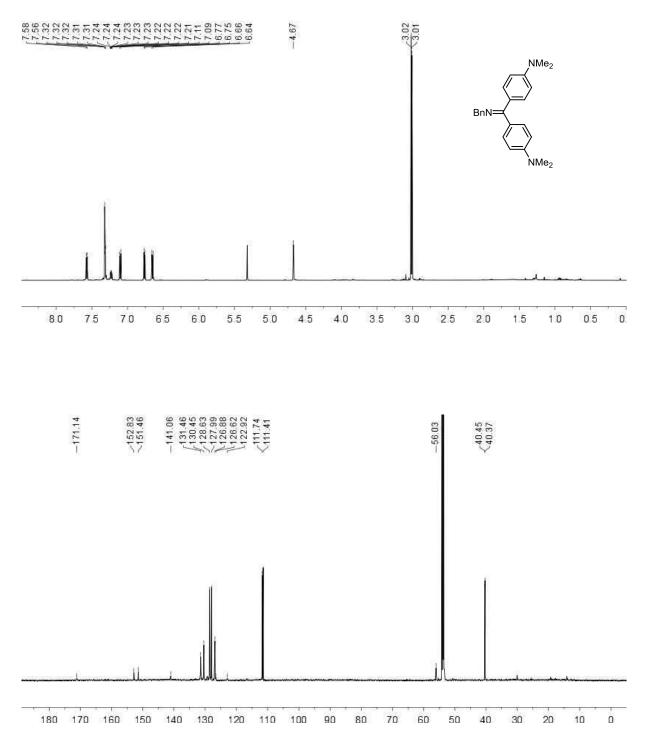

Carbene Insertion into the N–H bond. Preparation of Imine 8. Benzylamine (20 µL, 183 µmol) was added to the precooled (–78 °C) solution of complex **5** (63 mg, 45.4 mmol) in CH₂Cl₂ (2 mL). The resulting mixture was warmed to the room temperature and stirred for 15 min. The black precipitate (presumably Ag metal) was filtered off, the yellow filtrate was evaporated and the residue was purified by flash chromatography (EtOAc/MeOH 8/1→4/1) to give imine **8** as a yellow solid (23 mg, 65%). mp = 115-116°C (lit.⁶ 116°C); ¹H NMR (600 MHz, CD₂Cl₂): δ 7.57 (d, *J* = 9.1 Hz, 2H), 7.32 (m, 1H), 7.31 (dd, *J* = 2.1, 0.6 Hz, 2H), 7.25–7.21 (m, 2H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.65 (d, *J* = 9.1 Hz, 2H), 4.67 (s, 2H), 3.02 (s, 6H), 3.01 (s, 6H). ¹³C NMR (151 MHz, CD₂Cl₂): δ 171.1, 152.8, 151.5, 141.1, 131.5, 130.5, 128.6, 128.0, 126.9, 126.6, 122.9, 111.7, 111.4, 56.0, 40.5, 40.4. MS (ESI⁺): calcd for C₂₄H₂₈N₃ [M + H]⁺: 358.2278; found: 358.2279.

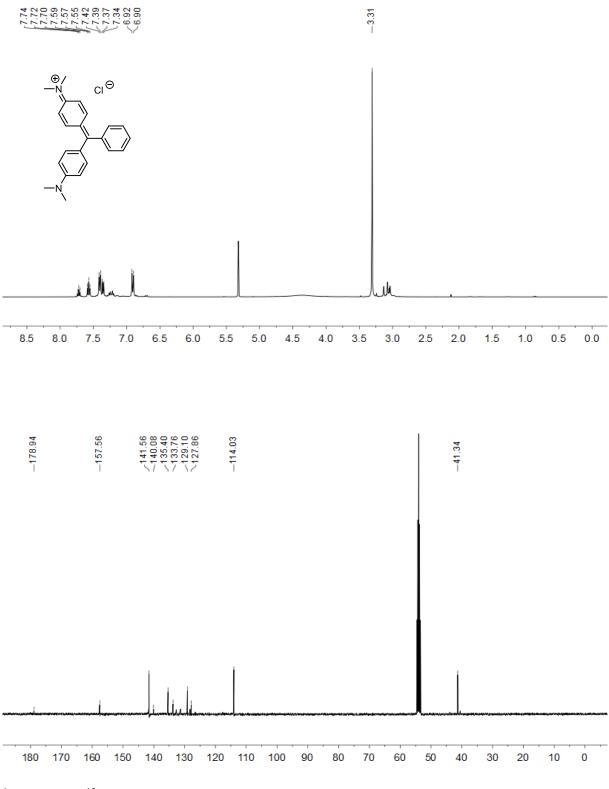
⁵ S. Akiyama, K. Yoshida, M. Hayashida, K. Nakashima, S. Nakatsuji, M. Iyoda, *Chem. Lett.* **1981**, *10*, 311-314.

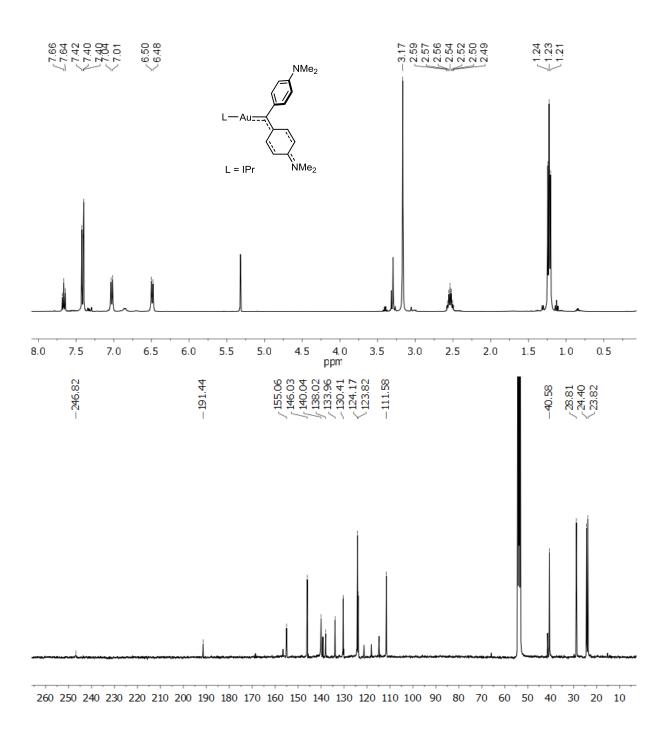

⁶ Hoechster Farbwerke, DE136616

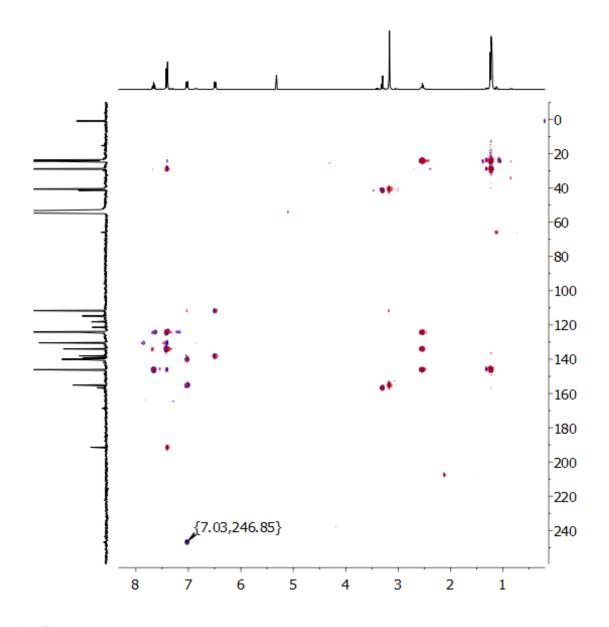

¹H (top) and ¹³C (bottom) NMR spectra of the diazo compound 3c (DMSO-d6)

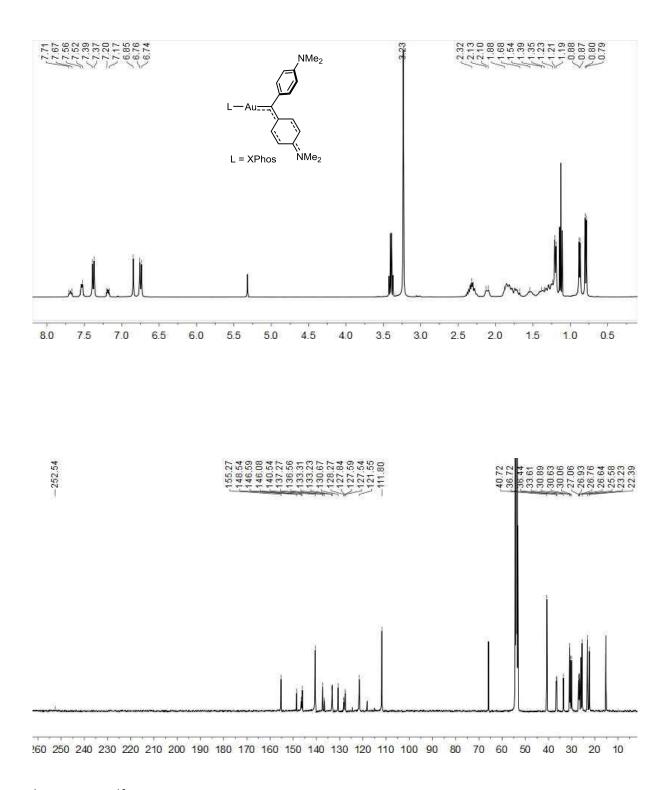

 1 H (top) and 19 F (bottom) NMR spectra of complex **5** (CD₂Cl₂, 253 K)


 $^{13}\text{C}\{^1\text{H}\}$ (top) and $^1\text{H}\text{-}^{13}\text{C}$ HMBC spectra of 5 (CD₂Cl₂, 253 K)


 1 H (top) and 13 C (bottom) NMR spectra of **6** (CD₂Cl₂)


¹H–¹³C HMBC spectrum of **6** (CD₂Cl₂)


 1 H (top) and 13 C (bottom) NMR spectra of imine 8 (CD₂Cl₂)


 1 H (top) and 13 C (bottom) NMR spectra of **11** (CD₂Cl₂)

 1 H (top) and 13 C (bottom) NMR spectra of **12a** (CD₂Cl₂, 253 K)

 $^{1}\text{H}-^{13}\text{C}$ HMBC spectrum of **12a** (CD₂Cl₂, 253 K)

 1 H (top) and 13 C (bottom) NMR spectra of **12b** (CD₂Cl₂, 253 K)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240

 ^{31}P NMR spectrum of 12b (CD₂Cl₂, 253 K)